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ABSTRACT
A non-RNP Banach space E is constructed such that E* is separable and
the RNP is equivalent to the PCP on the subsets of E.

The problem of the equivalence of the Radon-Nikodym Property (RNP) and the
Krein-Milman Property (KMP) remains open for Banach spaces as well as for
closed convex sets. A step forward has been made with Schachermayer’s Theorem
[S]. That result states that the two properties are equivalent on strongly regular
sets. Rosenthal, [R], has shown that every non-RNP strongly regular closed
convex set contains a non-dentable subset on which the norm and weak topologies
coincide. In a previous paper ([A-D]) we proved that every non-RNP closed
convex set contains a subset with a martingale coordinatization. Furthermore,
we established the Paf-representation for several cases. The remaining open case
in the equivalence of the RNP and the KMP is that of B-spaces or closed convex
sets with RNP equivalent to PCP on their subsets. A typical example of such a
structure is L![0, 1]. H. Rosenthal raised the question if this could occur in a space
with separable dual. R. James ([J;]) also posed a similar problem. The aim of
the present paper is to give an example of a Banach space E with separable dual,
failing the RNP, and such that the RNP is equivalent to the PCP on its subsets.
As a consequence we get that E does not contain ¢g(N) isomorphically and hence

it does not embed into a Banach space with an unconditional skipped F.D.D. On
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the other hand, E semiembeds into a Banach space with an unconditional basis.
The last property allows us to conclude that every closed convex non-RNP subset
of E contains a closed non-dentable set with a Paf-representation. (We recall
that a closed set K has a Paf-representation if there is an affine, onto, one-to-one
continuous map from the atomless probability measures on [0,1] to the set K.) In
particular, the RNP is equivalent to the KMP on the subsets of E. The space E is
realized by applying the Davis-Figiel-Johnson—-Pelczynski factorization method
to a convex symmetric set W of a Banach space E, constructed in this paper.
Finally, as a consequence of the methods used in the proofs of the example, we
obtain that every separable B-space X such that X**/X is isomorphic to £}(T)
has the RNP.

We start with some definitions, notations and results, necessary for our con-

structions.

A closed convex bounded set K is said to be §-non-dentable, § > 0, if every
slice of K has diameter greater than §. A closed convex set has the RNP if it
contains no §-non-dentable set. A closed subset K of a B-space has the P.C.P.
if for every subset L of K and for all ¢ > 0 there exists a relatively weakly open
neighbourhood of L with diameter less than €. K is stongly regular if for every
subset L of K and for every € > 0, there exists a convex combination Y A;S; of
slices (S;) of L, with diam(}_ AiS;) < €. It is well known that the RNP implies
the P.C.P., but the converse fails [B-R].

In the sequel D denotes the dyadic tree, namely the set of all finite sequences
of the form a = (0,¢1,...,6,) with &; = 0 or 1. For & in D, the length of a is
denoted by |a|. For n € N, the set {a € D : |a| = n} is called the n-th level
of the tree D. A natural order is induced on D, that is a < § if the sequence
« is an initial segment of the sequence 8. Two elements @, 8 of D are called
incomparable if they are incomparable in the above defined order. We note,
for later use, that each o in D determines a unique basic clopen subset V,, in the

Cantor’s group {0,1}N and a, B are incomparable iff V, N V3 = 0.

A basic ingredient in the definition of the space E is Tsirelson’s norm ||.||7 as
it is defined in [F-J]. Let (¢x)§2, denote the canonical unit vector basis in cgo.
For E, F finite non-void subsets of N we write ‘E < F’ for ‘maxE < min F".
For z = Y, Mtx, Ez is 3_;cp Atr. The norm |||l on Tsirelson’s space T
satisfies the following property.
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m
For z = Z’\"t" ,
k=1

m 1 n
I kzl Aktillr = max{max [Ae], 5 SUPZI 1E;zl|7}
= j=

where the “sup” is taken over all choices
n<Ei<E;<---<E,

with Ej,..., E, a sequence of intervals in the set of natural numbers. We recall
that (£.)$2, is an unconditonal basis for T, and T is a reflexive Banach space

not containing any £? for 1 < p < oo.

The space Ey

The space E, will be defined to have an' unconditional basis indexed by the
dyadic tree D and denoted by (eq)aep. For a sequence of reals (Ay)aep which

is eventually zero we define

¢
I Z Aata|| = sup{|] Z’\aitki”T 1€ N, {a;}L_, are incomparable,
a€D i=1
|a;| =k,', kl <k2 <0 < k[}.

It is clear that (eq)aep is an unconditional basis for the space E, defined by the
above norm.

Next, we verify certain properties of the space E,.
PROPOSITION 1: The dual of the space E, is separable.

Proof: The space E, has an unconditional basis, hence it is enough to show
that ¢! does not embed into E, [J;].

Suppose, on the contrary, that ¢! embeds into E,. Then, by standard argu-
ments, we can find an increasing sequence of natural numbers £; < €3 < --- <
¢ < --- and a normalized sequence {zr}$2, in Ey, equivalent to the usual basis

of £1, with
Ty = Z Aata-
HL<|a|<liq
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Now, for every choice of coefficients (ur),
m m
1Y mraell = sup |1 D pe( Aartas)lir
k=1 k=1 i

where nf = |af| and the “sup” is taken over all choices of sets {a¥}i; of
incomparable af with £ < |a¥| < €41 and |a¥| pairwise different.
By a known property of Tsirelson’s norm (Lemma IL3 of [C-S]), we get

m m
1Y w3 Aartatdlir < 61D pate i
k=1 i k=1

for each such choice of {af},. So

m m
1Y mezxll <61 Y S pitenllr
k=1 k=1

which gives that {ts, }§2, is equivalent to the basis of £!. This contradicts the
reflexivity of T. ]

A consequence of the above Proposition is that the basis (e4)qep is shrinking,.

Therefore, every z** in E}* has a unique representation as

z** =w* - lim E Aala 1= W* —~ E Aata
n—o0
laj<n €D

where Ay =< z**, €3, >.

We define the support of z**, denoted by supp z**, to be the set
{a € D:< 2*, e, >#0}.

LEMMA 2: Let z1* ,...,z}* in E}* be such that there are incomparable elements

ay, ...,k in D so that supp z}* is contained in
Wo, ={€D:8<a;ora; <p}.

Then,

k
*e 1 *
d(z:t+...+zk yBu) 2 EZd(;c..*,Eu).

=1
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Proof: For n < m we define

Ppm(3**)= D Iata
n<lal<m

and

Pp,oo)(z**) = w* - Z Aata

n<lal
where Ay =< 2**, ¢}, >.
Using this notation, we have

d(z™, Eu) = lim ||Pn,c0)(z"")]

and
1P stz = Bim_ 1Pl my(z™ I

To establish the result it is enough to show that there exists n such that for
alm>n

k k
L 1 =%
1Pmcei(Y_ i) 2 5 D (i, Bu).
i=1 =1

Actually, n = max{k, 1], ..., |ak|}.
Choose any m > n. We shall show that for all ¢ > 0,

N =

k
1Pm 001 (D 21l 2

i=1

k
S d(er, Ea) e
i=1

Given ¢ > 0, inductively we define {¢;,¢;}%_, such that
m<qg<l<--<qp <

and [P, ¢3(zi*)I| > d(z7*, Eu) - £.
For each 1 < ¢ < k there is a set {ﬂ; :1 < j < 5(i)} of incomparable elements
of D which lie on different levels of D, such that ¢; < |ﬂ;| < ¥¢; and

s(z)
Pl = 1 g -
J=

Notice that a; < 8} for all j = 1,..., s(3).
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Observe that U1<'<k
H

elements which lie on different levels of D. So,

k k
1Pim,c0) (D 5N 2 1P, 001 (D =)
=1 i=1

k s(d) ko s(i)

1
211322 2 tigille 2 5 D113 Ag; tigg
i=1 j=1

i=1 j=1

{ﬂ; :1 € j < 5(2)} consists of pairwise incomparable

k k
1 *k 1 %
= 3 IR aE 2 3 Y deE By —e B
i=1 =1
Consider the following closed convex subset of the unit ball of E,:
=]
K={z€E:z=)_ Y Aataro =12 20,20 = A(a0) + Man)}-
n=0 |a|=n

One can verify that K is the closed convex hull of the set (dg)aep , Where, for

every a in D, the vector d, is defined by the conditions
* * * 1 *
ea(da) = 1, C(ﬂ’o)(da) = e(p,l)(da) = Eeﬂ(da) and da € K.
It is easily checked that for every a € D,
1 1
da = 5(dao) + da,)); |lda = da,n)ll 2 5 oand |lda = d(a,1)ll =

which means that (dg)aep isa % tree. Consequently, K is non-dentable.

We set W = co(K U —K) and we denote by W its w*-closure in E**. Notice
that z** € W iff |e%(z**)| < 1, and €{a,0)(E") + €{g 1) (") = e5(z**) for all a
in D. Hence, we can define a map 7' from the unit ball M;({0,1}") of the space
M({0,1}¥) to W

N =

T: My ({0,1}¥) = W
by the rule

T(p)=w"~- Z #(Va)ea

a€D
where V, = {7 € {0,1}" : « is an initial segment of 7}.

Clearly, T is one-to-one and onto. Furthermore,
k
IT()ll < sup{Y" Iu(Var)| : {s}y incomparable) = ||l
i=1

Hence, T is extended to a bounded linear operator from M({0,1}N) onto the
linear span of W denoted by < W >.
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The Space E

The space E is the result of the application of the Davis-Figiel-Johnson-
Pelczynski factorization method to the set W defined above.

We give the precise definition and certain properties of the space E. For a
detailed presentation, we refer the reader to [D-F-J-P]. In particular, P.1, P.2,
and P.5, stated below, are established in Lemmata 2.1 and 3.1 of [D-F-J-P].

E={yeEu:llll = W) < oo}

Here ||.]|» denotes the Minkowski’s gauge of the set 2"W + 3% Bg,.

Let J : E — E, be the natural injection. The operator J is continuous.

Furthermore, J satisfies the following properties.
P.1: J** : E** — E}* is one-to-one and J**[E**|N E, = J[E].
P.2: J is a weak-to-weak homeomorphism on the bounded subsets of E.

This is a consequence of P.1.

P.2 implies that J[L] is closed for all closed convex bounded subsets L of E.
In particular, J is a semiembedding.

P.3: If L is a closed convez bounded subset of E failing the RNP, then J[L] also
fails the RNP.

By P.2, J[L] is closed. Suppose it has the RNP. Let S be a L-valued operator
S : L'[0,1] — E; the operator JoS is representable by a function ¢ in L}‘[’L].
Then the function 1 = J~1¢ represents the operator S. It follows that L has the
RNP. (For more details we refer to [B-R].)

P.4a: If L is a bounded subset of E and J[L] fails the RNP, then L fails the
RNP.

P.4b: If L is a bounded subset of E and J[L] fails the P.C.P., then L fails the
P.C.P.

P.4c: If L is a bounded subset of E and J[L] is not strongly regular, then L is
not strongly regular.

P.4a,b,c follow from P.1. In particular, they are consequences of the fact that
J*[E}] is norm-dense in E*.

P.5: Let < W > denote the closed linear span of the w*-closure W of W in
E3*. Then,

JE*|C<W>.
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For this, notice that Bge C 2"W + zl,.B Ex+, hence
% nyx 1 3 -
J*[Bg-] C[(2"W + aBEr) S <W >,

The following Proposition is an immediate consequence of the above properties.

PROPOSITION 3: (i) The dual E* of E is separable.
(ii) The space E fails the RNP.

Proof: (i) Since, by P.1, J** is one-to-one, J*[E?] is norm-dense in E*. Hence,
by Proposition 1, E* is separable.

(ii) Notice that W C J[BEg). Since W fails the RNP, by P.4a we get that Bg
fails the RNP.

We proceed now to the proof of the main property of the space E.

PROPOSITION 4: Let C be a closed, convex, bounded, non-RNP subset of E.
Then C fails the P.C.P.

Proof: P.3 ensures that J[C] is a non-RNP closed subset of E,. Hence, for some
é > 0, there exists a convex closed subset L of J[C] which is é-nondentable. Let
L denote the w*-closure of L in E2*. We shall show the following:
(*) For every choice Si,Sa,...,Sn of slices of L there ezist z* in S;, 1 =
1,2,...,n, such that for all (), € R% with Z;l Ai = 1, we have

n
. 6
d> " xizl*, Ey) > 5"
i=1

It follows from (*) that J[C]is not strongly regular. By a result due to Bourgain
[B] this yields that J[C] fails the PCP. (See also [G-G-M-S].) By P.4a we then
get that C fails the PCP.

Proof of (*): Let 81,53,...,Sn be slices of L. Using Lemma 2.7 from [R], we

choose for each i = 1,...,n an uncountable subset (2§ )e<w, of Si such that

)
d(’”E,'i - zET.-,Eu) > 'Sg for £ #¢.

Recall that L is a subset of J**[E**] C < W > and that T[M({0,1}V)] is
norm-dense in < W >. Hence, there are (t¢,i)¢<w, ,i<n such that

*% 6
ITpes — =5l < 256"
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It is known ([L]) that M({0,1}")=(>_  EDL'(\))r where {A;}ycae

¥<2¥
are pairwise singular probability measures on {0,1}", and L'(\,) = L'[0,1] or
I'\,)=R.
Therefore,
= dpe,i
bei = d/\7

y<¥

where the sum is taken in £'-norm.
Choose a finite subset Fy ; of 2* so that the measure

dpe i

YEFg i v
satisfies
. 6
(1) 1 Tpe s — zgill < 756"
In particular, for £ # ( we get
)
) d(Tpe; — Tpe,i o Eu) > e

Apply Erd6s-Rado’s Lemma ((C-N]) to the family {F¢ = UT‘_I Fei, E <wi}
to find an uncountable set A C w; and a finite set F C 2¥, such that for ¢ # ¢
in A

FenF;=F

We set Ap = EM,\, and for £ in A

duy ;
A AP 4]
Vegi= luf,l dAF .
Claim: Foralli=1,..,n the set B; = {¢ € A : d(Tve;, Ey) < £} is at most
countable.
To prove the claim suppose that for some ¢ the set B; is uncountable. Then,
since L!(Ar) is separable, there are ¢ # ¢ in B; such that
5 - i <
dAr  dAf 16°
But then 5
d(Tpg; — Tpeir Eu) < 2
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which contradicts inequality (2); this completes the proof of the claim.
Choose £} < £ 2 < -+ < £n in A such that

6
d(Tve, i, Ey) > —.
) (Tvein ) > 15

In the rest of the proof we shall denote (¢;,1) by &;.
Notice that the measures vg,...,v¢,,Ar are pairwise singular. Choose

Uy,..., U, pairwise disjoint clopen subsets of {0,1}N such that fori = 1,...,n
(4) llve, TUC] <~ and d”‘"IUU <
: 128

We are ready to prove the desired property. Indeed, for A, > 0, En ; Ai=1
=

we have

n n n
d> " MTu, Bu) 2 )" MiTug, | Us, E)
i=1 i=1 i=1

>d(ZI\(TV¢ | U:), Eu) ~ ZA”TV rUU||-EA||d"‘- [UU]]

J#i

From Lemma 2 we get
n 1 n
d(Y_ M(Tv,, [0:),Ba) 2 5 ) hid(Tv,, 1U;, Eu)
i=1 i=1

and from (3) and (4) we get

A MNTHg, Ba) > 5 20 = o7 = Tog

=1

Finally, from (1) we have
d(z Xizgr, By) > mr d
256

So (*) is proved and the proof of the Proposition is complete.
We note that our proof and P.4c yield, in fact, that C is not strongly regular.
|
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Remark: The space E does not contain a subspace isomorphic to ¢o(N). This is
because ¢y(N) contains a non-RNP closed convex subset on which norm and weak
topologies coincide. Since E fails the PCP and does not contain co(N), it does
not embed into a space with an unconditional skipped blocking finite dimensional
decomposition. Finally, E semiembeds into E,, a space with an unconditional

basis.

PROPOSITION §: The properties RNP and KMP are equivalent on the subsets of
E. Furthermore, if C is a closed convex non-RNP subset of E, then it contains

a subset L with a Paf-representation.

Proof: As we mentioned before, if C is a closed convex bounded non-RNP set,
then J[C] carries the same properties and it is contained in E, which has an
unconditional basis. Therefore, there exists a closed convex subset L of J[C]

with a Paf-representation [A-D]. Then J~1[L] has the same property. |
We conclude with the following result.

THEOREM 6: Suppose that X is a separable Banach space such that X**/X is
isomorphie to £}(T'). Then X has the RNP.

Proof: Assume that X contains a §-non-dentable subset C. Then the techniques
developed in the proof of Proposition 4 show that C is not strongly regular.
Actually, every convex combination Z:_-l A;S; of slices of C will have diameter
greater than §/256. Hence, by a result due to Bourgain [B], #! embeds into
X*, and by Pelczynski’s Theorem [P], M[0,1] embeds into X**. But then there
exists a sequence (ry*)nen Weakly convergent to zero with d(z}*,X) > ¢, for
some ¢ > 0. This contradicts the Schur property of £*(T). |

Remark: There are known results which show that for some sets T, ¢!(T") can
be isomorphic to X**/X for some separable space X. £1(N) has this property
by a theorem of Lindenstrauss ([Li]). Odell in [O] has constructed a separable
B-space X with X**/X = £}(2¥).
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