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ABSTRACT 

A non-RNP Banach space E is constructed such that E* is separable and 

the RNP is equivalent to the PCP on the subsets of E. 

The problem of the equivalence of the Radon-Nikodym Property (RNP) and the 

Krein-Milman Property (KMP) remains open for Banach spaces as well as for 

closed convex sets. A step forward has been made with Schachermayer's Theorem 

[S]. That result states that the two properties are equivalent on strongly regular 

sets. Rosenthal, [R], has shown that every non-RNP strongly regular closed 

convex set contains a non-dentable subset on which the norm and weak topologies 

eoineide. In a previous paper ([A-D]) we proved that every non-RNP closed 

convex set contains a subset with a martingale coordinatization. Furthermore, 

we established the Pal-representation for several cases. The remaining open case 

in the equivalence of the RNP and the KMP is that of B-spaces or closed convex 

sets with RNP equivalent to PCP on their subsets. A typical example of such a 

structure is L x [0, 1]. H. Rosenthal raised the question if this could occur in a space 

with separable dual. R. James ([32]) also posed a similar problem. The aim of 

the present paper is to give an example of a Banach space E with separable dual, 

failing the RNP, and such that the RNP is equivalent to the PCP on its subsets. 

As a consequence we get that E does not contain c0(N) isomorphically and hence 

it does not embed into a Banach space with an unconditional skipped F.D.D. On 
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the other hand, E semiembeds into a Banach space with an unconditional basis. 

The last property allows us to conclude that every closed convex non-RNP subset 

of E contains a closed non-dentable set with a Pas (We recall 

that a closed set K has a Pas if there is an afflne, onto, one-to-one 

continuous map from the atomless probability measures on [0,1] to the set K.)  In 

particular, the RNP is equivalent to the KMP on the subsets of E. The space E is 

realized by applying the Davis-Figiel-Johnson-Pelczynski factorization method 

to a convex symmetric set W of a Banach space Eu constructed in this paper. 

Finally, as a consequence of the methods used in the proofs of the example, we 

obtain that  every separable B-space X such that X**/X is isomorphic t o / l ( F )  

has the RNP. 

We start  with some definitions, notations and results, necessary for our con- 

structions. 

A closed convex bounded set K is said to be 6-non-dentable, 6 > 0, if every 

slice of K has diameter greater than 6. A dosed convex set has the RNP if it 

contains no 6-non-dentable set. A closed subset K of a B-space has the P.C.P. 

if for every subset L of K and for all ~ > 0 there exists a relatively weakly open 

neighbourhood of L with diameter less than ~. K is stongly regular if for every 

subset L of K and for every e > 0, there exists a convex combination ~ $iSi of 

slices (Si) of L, with d i a m ( ~  ~iSi) < ~. It is well known that the RNP implies 

the P.C.P., but  the converse fails [B-R]. 

In the sequel :P denotes the dyadic tree, namely the set of all finite sequences 

of the form o~ = (0,~l, . . . ,e, ,)  with ei = 0 or 1. For a in T~, the length of a is 

denoted by In]. For n E N, the set {a E 2) : lal = n} is called the n-th level 

of the tree :D. A natural order is induced on :D, that is o~ -g/~ if the sequence 

o~ is an initial segment of the sequence /3. Two elements a,  fl of :D are called 

i n c o m p a r a b l e  if they are incomparable in the above defined order. We note, 

for later use, that each a in :D determines a unique basic clopen subset Va in the 

Cantor's group {0, 1} N and a,  /~ are incomparable iff V~ f3 V~ = 0. 

A basic ingredient in the definition of the space E is Tsirelson's norm ]].[[T as 

it is defined in IF-J]. Let (tk)~~ denote the canonical unit vector basis in coo. 

For E,  F finite non-void subsets of l~l we write 'E  < F '  for 'max E < min F ' .  

For x = ~k~=l )~ktk, Ex is ~ k e E  )~ktk. The norm ]I-lIT on Tsirelson's space T 

satisfies the following property. 
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m 

For x = Z Aktl, , 
k----I 

m n 
A 1 II  XktkllT = max{mkax I k[, ~ sup Z IIEj IIT} 

k = l  j = l  

where the "sup" is taken over all choices 

n_~E1 < E 2  < ' " < E n  

with Ez, ..., En a sequence of intervals in the set of natural numbers. We recall 
co that (t~)~= 1 is an unconditonal basis for T ,  and T is a reflexive Banach space 

not containing any gP for 1 < p < oo. 

T h e  space Eu 

The space Eu will be defined to have a n  unconditional basis indexed by the 

dyadic tree 7) and denoted by (ea)aeg. For a sequence of reals (Aa)ar which 

is eventually zero we define 

t 

I] ~ A=e=ll sup{iJ ~ A=,tk, J[T :g e N,  t = { a i } i =  1 a r e  incomparable, 
a E ' O  i = 1  

I~i[ = ki, kz < k2 < . . .  < kt}. 

It is clear that (e~)~e9 is an unconditional basis for the space E ,  defined by the 

above norm. 

Next, we verify certain properties of the space Eu. 

PROPOSITION 1: The dual of the space Eu is separable. 

Proof: The space E ,  has an unconditional basis, hence it is enough to show 

t h a t  s does not embed into E~ [Jz]. 

Suppose, on the contrary, that gz embeds into Eu. Then, by standard argu- 

ments, we can find an increasing sequence of natural numbers gz < t2 < "'" < 

gk < "'" and a normalized sequence {xk}~=z in Eu, equivalent to the usual basis 

of gx, with 

Xk = 

th <]a]_<tk+z 
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Now, for every choice of coefficients (#k), 

m r n  

II ~ . ~ I I  = sup II ~ ~(~ ;~,-.,~)II~ 
k = l  k = l  i 

k __ I~1 and the "sup" is t~ken over all choices of sets {c~}t,i of where n i 

t with s < I~fl < ~k+l and I~fl pairwise different. incomparable a i 

By a known property of Tsirelson's norm (Lemma II.3 of [C-S]), we get 

m m 

II ~ ~k(~ ~t~)lIT < 611 ~ ~ktt,+~ liT 
k- - I  i k----1 

for each such choice of {eit}t,i. So 

m m 

k----1 k = l  

which gives that {tt~ }k~2 is equivalent to the basis of ~1. This contradicts the 

reflexivity of T. | 

A consequence of the above Proposition is that the basis (e~)~,Ev is shrinking. 

Therefore, every z** in E** has a unique representation as 

where A~ = <  z**,e* >. 

We define the suppor t  of z**, denoted by supp z**, to be the set 

{a E v :< x**, %* > #  0}. 

LEMMA 2: Let z~* ,..., z~* in E** be such that there are incomparable elements 

** is contaJned in ~z,...,~k in ~) so that supp z i 

W~,, = {~ E 79 :/~ -~ ~i or ~i "~/~}. 

Then, 
k 

i---1 
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Proof.." For n < m we define 

i-" el  I x  **'~ A~eo [.,m]~ ) = z.., 
n<l~l<m 

and 

t'X** ~' W* - -  
",~l( ) = Z_. 

,,<1~1 

where  A~, = <  z**, e~, > .  

Using this nota t ion ,  we have 

d(=**, E. )  = J i ~  IIP[.,~](=**)II 

and 

IIPt.,ool@**)Jl = l i r a  Ilet.,m](~")l I. 
m -..~oO 

To establ ish the result  it is enough to show tha t  there  exists n such tha t  for 

all m > n 
k k 

Z **i ~1 ~_j~-~ ** II~m,~l()-']~ )11--> d(~i ,E~). 
i = 1  i=1 

Actually, n = max{k ,  I~al,..., I~kl}. 

Choose any m > n. We shall show tha t  for all e > O, 

k 1 k 
IIPtm,ooJ(Y]~ z**)ll --> ~ Y]~ d(zT*,E.) - e. 

i=1 i=1 

Given r > 0, induct ively we define {qi,gi}ki=, such tha t  

m <  ql < gl < " "  < qk < ~.k 

PI x** d ( z  i , E u )  - ~. and II t,,,t,j( ~ )11 > ** 
For each 1 < i < k there  is a set {/3j : 1 < j < s(i)} of incomparab le  e lements  

of 29 which lie on different levels of 7), such tha t  qi < I/~jI -< e~ and  

,(0 

llet,,,e,](x**)ll = II Y~'~al fiajIIIT" 
j= l  

Notice t ha t  a i  -</3} for all j = 1, ..., s(i) .  
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Observe that U l< i<k  {3) : 1 _< j < s(/)} consists of pairwise incomparable 

dements which lie o?, (tifferent levels of 29. So, 
k k 

itPtm,oo](~ x~*)il >_ IIPtm,,,~(~ x~*)tl 
i=l  i=1 

k s(i)  1 k s(i)  

--- II ~ ~ ~1 tt~'tllT >- ~ ~ II ~ A~ 1 tI~jIIIT 
i=1 j = l  i=1 j = l  

1 k 1 k 
= - ~ ** ~ _ d ( z ~ * , E , , ) - , .  , 2 .= IlP[q,,t,l(Zi )11 >- ~ ,=1 

Consider the following closed convex subset of the unit ball of E~: 
o o  

K = {x 6 E . : x  = E ~ Aaea, A0 = 1,Aa > 0, Aa = A(a,0) + A(a.1)}. 
n=O lal--n 

One can verify that K is the closed convex hull of the set (da)ae~ , where, for 

every a in 29, the vector da is defined by the conditions 
, 1 , 

e*~(d,~) = 1, e(a,0)(d~ ) = e~a,a)(d~, ) = ~ea(d,~ ) and d,~ E g .  

It is easily checked that for every a 6 29, 
1 1 1 

da = ~(d(,,,0) + d(a,1)), Ild~ - d(,~,0)l[ > ~ and Ilda - d(,,,1)ll > 

which means that (d,~)aev is a �89 tree. Consequently, K is non-dentable. 

We set W = eo(K U - K )  and we denote by ~r its w*-closure in E**. Notice 

e* [X **~ e* [z **~ that z** 6 1~ iff le~,(z**)l < 1, and (a,0)t J + (a,1)t j = e*(x**) for all a 

in 29. Hence, we can define a map T from the unit ball MI({0, 1} N) of the space 

M({0, 1} N) to 1~r 

T :  MI({0,1} N) ~ l~  

by the rule 

T(p) = w* - ~/~(V,)ea 
aE'P 

where V, = {7 6 {0, 1}N: a is an initial segment of 7}. 

Clearly, T is one-to-one and onto. Furthermore, 
k 

IIT(,)li < s u p { ~  I,(Yo,)l : {- ,}11 incomparable} = ii,ii. 
/=1 

Hence, T is extended to a bounded linear operator from M({0, 1} N) onto the 

linear span of I~ denoted by < W >. 
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The Space E 

The space E is the result of the application of the Davis-Figiel-Johnson- 

Pelczynski factorization method to the set W defined above. 

We give the precise definition and certain properties of the space E. For a 

detailed presentation, we refer the reader to [D-F-J-P]. In particular, P.1, P.2, 

and P.5, stated below, are established in Lemmata 2.1 and 3.1 of [D-F-J-P]. 

E = e IllYlII = IIYI?.) < 
n = l  

1 B Here ]].1]- denotes the Minkowski's gauge of the set 2"W + ~ E.. 

Let J : E ---* E~ be the natural injection. The operator J is continuous. 

Furthermore, J satisfies the following properties. 

P . I :  J'* : E** --* E** is one-to-one and J'*[E**] N E,  = J[E]. 

P.2: J is a weak-to-weak homeomorphism on the bounded subsets of E. 

This is a consequence of P.1. 

P.2 implies that J[Ll is closed for all closed convex bounded subsets L of E. 

In particular, Y is a semiembedding. 

P.3: If  L is a closed convez bounded subset orE failing the RNP, then J[L] also 

fails the RNP. 

By P.2, J[L] is closed. Suppose it has the RNP. Let S be a L-vained operator 

S : L a [0, 1] ~ E; the operator JoS is representable by a function ~o in LjC~[L]. 

Then the function r = J-X~0 represents the operator S. It follows that L has the 

RNP. (For more details we refer to [B-R].) 

P.4a: I f  L is a bounded subset of E and J[L] fails the RNP, then L fails the 

RNP. 

P.4b: I l L  is a bounded subset o r e  and J[L] fails the P.C.P., then L fails the 

P.C.P. 

P.4c: If  L is a bounded subset of E and J[L] is not strongly regular, then L is 

not strongly regular. 

P.4a,b,c follow from P.1. In particular, they are consequences of the fact that 

J*[E*] is norm-dense in E*. 

P.5: Let < 17V > denote the closed linear span of the w*-closure 17V of W in 

E~,*. Then, 

J"[E**] c < W >. 
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For this, notice that BE.. C 2" I~ + 2!~ B E.. , hence 

J"[BE. . ]  C_ ['](2"W + ~ B E - . )  C < ~ >. 
n 

The following Proposition is an immediate consequence of the above properties. 

PROPOSITION 3: (i) The dun/E* o rE  is separable. 

(ii) The space E fMls the RNP. 

Proof.- (i) Since, by P.1, s'" is one-t~one, J'[E:] is norm-den~ in E'. Hence, 
by Proposition 1, E* is separable. 

(ii) Notice that W C_ J[BE]. Since W fails the RNP, by P.4a we get that BE 

fails  t h e  P~NP. 

We proceed now to the proof of the main property of the space E. 

PROPOSITION 4: Let C be a closed, convex, bounded, non-RNP subset of E. 

Then C fails the P.C.P. 

Proof." P.3 ensures that J[C] is a non-RNP closed subset of E... Hence, for some 

6 > 0, there exists a convex closed subset L of J[C] which is &nondentable. Let 

L denote the w*-closure of L in E~*. We shall show the following: 

(*) For every choice S1, $2, ..., S ,  of Jlice, of L ~here ezis~ z** in Si, i = 

1,2,...,n, ~uch that for all (A,)i=, 6 R+ wi~h )~i = 1, we have 
1 

" 6 

a ( ~  ~,x~',E.) > 25---~" 
i=1 

It follows from (*) that J[C] is not strongly regular. By a result due to Bourgain 

[B] this yields that S[C] fails the PCP. (See also [G-G-M-S].) By P.4a we then 

get that C fails the PCP. 

Proof of (*): Let Sl, S2,..., S. be slices of L. Using Lemma 2.7 from [R], we 

choose for each i = 1, ..., n an uncountable subset (z~,*)~<,,t of Si such that 

d(~,', - x~',, E.) > ~ for ~ # ~. 

Recall that L is a subset of J**[E**] C < 14 r > and that TIM({0, 1}N)] is 

norm-dense in < 14' >. Hence, there are (P~,i)~<~,i<n such that 

6 
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It is known ([L]) that M({O, 1} N) = ( Z 7 < 2 ~  @ L'(XT))I where {)~7}7<2,~ 

are palrwise singular probability measures on {0,1} N, and L 1 (~7) = L'  [0, 1] or 

L ~ ( ~ )  = R .  

Therefore, 
d#r 

P~,i = Z 
7<2 ~' dX7 

where the sum is taken in gLnorm. 

Choose a finite subset F~,i of 2 '~ so that the measure 

satisfies 

( a )  

#~,~ = E d#r 
7EFr d~7 

6 IIT~-,i ** - -  - x~'iH < 256" 

In particular, for ~ ~t ( we get 

5 
(2) d(T#~,i - Tptr , E . )  > ~. 

n 

Apply ErdSs-Rado's Lemma ([C-N]) to the family {F~ = U i = I  F~,i, ~ < wl} 

to find an uncountable set A C Wl and a finite set F C 2 ~, such that for ~ ~ 

in A 

&n& = F .  

We set ~F = E T ~ F ~ 7  and for ~ in A 

Pr -- - -  d)~ F " 

6 
d ( T # } , i -  T#~,i ,E.)  < 

But then 

Claim: For all i = 1,.. . ,n the set Bi = (~ E A :  d(Tvr < ~ }  is at most 

countable. 

To prove the claim suppose that for some i the set Bi is uncountable. Then, 

since LI(XF) is separable, there are ~ # ( in Bi such that 

lid.b d.~,, 6 
dXF d~F <i~" 
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which contradicts inequality (2); this completes the proof of the claim. 

Choose ~1 < ~ 2 < "'" < ~n in A such that 

6 
(3) d(Tv~,.i,E~) > 1"-6" 

In the rest of the proof we shall denote ((,, i) by ~i. 

Notice that the measures v~x,...,v~,,,AF are pairwise singular. Choose 

U1,..., Un pairwise disjoint clopen subsets of {0,1} N such that for i = 1, ...,n 

din" I ('1 ,S and II - -  U~II < (4) live, t uCll < 12---8 dxF j--~ffl 128" 

We are ready to prove the desired property. Indeed, for A i > 0, ) "  Ai = 1 
- -  z - . . w ,  _-- 1 

we have 
n n 0 

d(E AiT#~,,E,.) > d( E AiTtz~, ( Uj,E.) 
i=1 /=1 j = l  

n 

>_ d ( Z  Ai(Tv,, 
i=1 

I I  n I t  

r u,), E.)- ~,__, ,~illT~',, r J~,U viii- ~,__, ~, II d-~-d'" r jU= u~ll. 

From Lemma 2 we get 

n 1 " 
d ( ~  A,(Tv,, F U,), E.) >_ ~ ~ :~,d(Tv,, r V,, E.) 

/=1 ,=1 

and from (3) and (4) we get 

I t  

i= l  

1 36 6 6 

2 64 64 128 

Finally, from (1) we have 

n ** ~- 

d(E Aix~, ,Eu) > 256" 
i=1 

So (*) is proved and the proof of the Proposition is complete. 

We note that our proof and P.4c yield, in fact, that C is not strongly regular. 
| 
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Remark: The space E does not contain a subspace isomorphic to c0(N). This is 

because c0(N) contains a non-RNP closed convex subset on which norm and weak 

topologies coincide. Since E fails the PCP and does not contain c0(N), it does 

not embed into a space with an unconditional skipped blocking finite dimensional 

decomposition. Finally, E semiembeds into Eu, a space with an unconditional 

basis. 

PROPOSITION 5: The properties RNP and KMP are equivalent on the subsets of 

E. Furthermore, if  C is a dosed convex non-RNP subset of E, then it contains 

a subset L with a Pa~-representation. 

Proof." As we mentioned before, if C is a closed convex bounded non-RNP set, 

then J[C] carries the same properties and it is contained in Eu which has an 

unconditional basis. Therefore, there exists a closed convex subset L of J[C] 

with a Pas [A-D]. Then j-I[L] has the same property. | 

We conclude with the following result. 

THEOREM 6: Suppose that X is a separable Banach space such that X**/X is 

isomorphic to ~1 (F). Then X has the RNP. 

Proof: Assume that X contains a 6-non-dentable subset C. Then the techniques 

developed in the proof of Proposition 4 show that C is not strongly regular. 

Actually, every convex combination ~ " ~  AiSi of slices of C will have diameter 
1 

greater than 6/256. Hence, by a result due to Bourgain [B], ~1 embeds into 

X*, and by Pelczynski's Theorem [P], M[0, 1] embeds into X**. But then there 

exists a sequence (x**)n~N weakly convergent to zero with d(x~*,X) > ~, for 

some ~ > 0. This contradicts the Schur property of s | 

Remark: There are known results which show that for some sets F, s can 

be isomorphic to X**/X for some separable space X. s has this property 

by a theorem of Lindenstrauss ([Li D. Odell in [O] has constructed a separable 

B-space X with X**/X ~- ~1(2~). 
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